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Transition in a fully developed circular pipe flow was investigated experimentally
by introducing periodic perturbations. The simultaneous excitation of helical modes
having indices m = ±1,±2 and ±3 was chosen. The experiments revealed that the
late stage of transition is accompanied by the formation of streaky structures that
are associated with peaks and valleys in the azimuthal distribution of the streamwise
velocity disturbance. The breakdown to turbulence starts with the appearance of
spikes in the temporal traces of the velocity. Spectral characteristics of these spikes
and the direction of their propagation relative to the wall are similar to those in
boundary layers. Analysis of the data suggests the existence of a high-shear layer in
the instantaneous velocity profile.

Additional experiments in which a very weak, steady flow was added locally to the
periodic axisymmetric perturbation were also carried out. These experiments resulted
in the generation of a single peak in the azimuthal distribution of the disturbance
amplitude. The characteristics of the transition process (spikes, vortical patterns etc.)
within this peak were similar to ones observed in the helical excitation experiments.
Based on these results one may conclude that late stages of transition in a pipe
flow and in a boundary layer are similar. The present report is part of an ongoing
investigation that was initiated by Eliahou, Tumin & Wygnanski (1998a).

1. Introduction
This paper describes an experimental investigation of a late stage of transition

in a circular pipe flow subjected to periodic perturbations emanating from the wall.
The investigation is a continuation of the experiments initiated by Eliahou, Tumin &
Wygnanski (1998b, hereafter referred to as ETW).

Transition from laminar to turbulent flow in a circular pipe is often referred to
as ‘bypass transition’ (see Morkovin & Reshotko 1990; Morkovin 1993; Reshotko
1994). The parabolic velocity profile is linearly stable and the transition scenario has
to bypass the stage of Tollmien–Schlichting (TS) waves existing in boundary layer
flows.

Leite (1959) introduced axially symmetric disturbances of large amplitude into
a fully developed flow and revealed that transition to turbulent flow takes place
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whenever the disturbance amplitude exceeds a certain threshold level that decreases
with increasing Reynolds number. Fox, Lessen & Bhat (1968) excited their pipe flow
with two helical modes having indices m = ±1. They concluded that their disturbances
could be unstable and established a ‘neutral curve’ in the ‘frequency–Reynolds number’
plane. Rubin, Wygnanski & Haritonidis (1980) introduced a pulsed disturbance into
a fully developed Poiseuille flow and concluded that the resulting transitional flow
was similar to the flow disturbed at the inlet. Darbyshire & Mullin (1995) extended
the previous experiments with disturbances introduced into fully developed pipe flow.
They established that a critical amplitude of the disturbance was required to cause
transition, and showed its dependence on Reynolds number. Recent experiments by
Draad, Kuiken & Nieuwstadt (1998) revealed that the critical amplitude also depends
on the disturbance frequency. Their qualitative results, requiring a threshold amplitude
to cause transition, are in agreement with numerical simulations describing the onset
of turbulence in pipe flows (Boberg & Brosa 1988).

ETW investigated a bypass transition in a circular pipe flow with help of controlled
disturbances. The disturbances were generated by eight acoustic drivers that provided
periodic blowing and suction through eight slots in the wall. Most of the experiments
were carried out by simultaneous generation of two opposing helical modes m = ±2.
The results of ETW indicated that transition to turbulence occurs when streamwise
vortices develop due to a nonlinear interaction of helical modes, distorting the time-
averaged velocity profile. To clarify the role of the streamwise vortices, they were
also generated artificially by four weak steady jets that were superposed on the
small-amplitude, periodic, helical disturbances. The experiment revealed that there is
a self-sustaining mechanism, when the weak streamwise rolls support the instability
of the helical modes of indices m = ±2 which, in turn, amplify the steady vortices.

The periodicity in the azimuthal direction of the streamwise vortices observed
by ETW is reminiscent of the spanwise periodicity of streamwise vortices in the
experiments by Klebanoff, Tidstrom & Sargent (1962). One can suggest that there
might be a considerable similarity between the respective transition mechanisms in
boundary layers and in pipes. Hot-wire measurements by Eliahou et al. (1998a)
revealed that the transition process is accompanied by the appearance of spikes
in the velocity history and the amplitude spectra of these spikes were similar to
those observed by Borodulin & Kachanov (1995). These observations provided the
motivation for the present work, that endeavours to describe the details of the late
stages of transition in a pipe flow and to compare them with observations made in a
boundary layer. Hereafter, the term ‘late stage of transition’ implies the stage when
spikes appear in the temporal traces of the velocity.

We shall recapitulate briefly what is known about the late stages of transition in
boundary layers (more detailed information may be found in the reviews by Kachanov
1994 and by Bowles 2000). Hama, Long & Hegarty (1957) visualized the flow in a
disturbed boundary layer in a water tank and observed the formation of a Λ-vortex
in the transition zone. Klebanoff et al. (1962) discovered the existence of streamwise
vortices in the flow field near the surface, by measuring two velocity components. To
emulate the ‘natural’ spanwise modulation of the flow and to control its spanwise
variation they placed strips of tape beneath the vibrating ribbon. The interaction
between stationary disturbances and travelling waves led to strong spanwise modula-
tion of the flow. (Weak steady jets were used by ETW to obtain azimuthal variation
in the flow near the surface of a pipe.) The maxima in the spanwise distribution
of the streamwise-periodic velocity disturbance were called ‘peaks’, the minima ‘val-
leys’. The breakdown to turbulence was observed at the ‘peak’ locations and was
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accompanied by strong negative fluctuations in the streamwise velocity component,
commonly referred to as spikes. The number of spikes could double and triple with
increasing downstream distance. Kovasznay, Komoda & Vasudeva (1962) measured
three velocity components that were phase locked to the oscillations of the ribbon
and concluded that a very intense vortex layer is periodically formed in the boundary
layer. The high-shear layer had a shape of a delta wing in a plan view that was inclined
to the surface in the elevation view. The sharp negative pulse in the oscilloscope trace
(a spike) was associated with a ‘kink’ in the vortex sheet that was deduced from the
data representing the vorticity distribution in the elevation view. Detailed flow-field
visualization made by Hama & Nutant (1963) reinforced the notion that Λ-shaped
vortex loops exist. They observed that a primary Λ-vortex creates a strong upward
fluid motion in between its legs, thus forming a high-shear layer. Subsequently, small
Ω-shaped vortex (observed by Klebanoff et al. (1962), and called a hairpin vortex)
was observed to separate from the apex of the Λ-vortex. Williams, Fasel & Hama
(1984), who measured the three velocity components, confirmed the concept of the
vortex loop. Vorticity in the loop is mainly oriented in the downstream direction,
while the vorticity in the high-shear layer is predominantly in the spanwise direction.
The magnitude of the spanwise vorticity component in the high-shear layer is three
times larger than in the loop and it is also two times larger than the maximum
vorticity in the undisturbed laminar boundary layer. Experiments by Kachanov et
al. (1984, 1985, 1989), and Borodulin & Kachanov (1988) revealed that the spikes
have a deterministic periodic structure that arises from amplification of the higher
harmonics. A detailed study of the spike properties was carried out in Borodulin &
Kachanov (1988).

The main features of laminar–turbulent transition are usually attributed to Kle-
banoff and are referred to as the K-regime of breakdown. The K-regime is recognized
by the alignment of the Λ-vortices in rows. Kachanov, Kozlov & Levchenko (1977)
discovered that transition might be accompanied by a staggered array of Λ-vortices
and referred to it as the N-regime. A detailed discussion of the physical mechanisms
associated with the K- and N-regimes is given by Kachanov (1994). The alternative
name for the transition accompanied by a staggered array of Λ-vortices is the H-
regime (after Herbert, who developed a theoretical model for this type of transition).
We keep here the terminology introduced by Kachanov (1994) for the latter regime
(N-regime). Bake, Kachanov & Fernholz (1996) showed that the alignment of the
coherent structures during the late stages of transition can assume either N- or K-
modes without changing the nature of the breakdown process. The formation of the
Λ-patterns in the K- and N-regimes is different, but both lead to the formation of
high-shear layers and spikes during the late stage of the transition process.

The late stage of transition was also investigated by direct numerical simulations
(DNS, for a review see Kleiser & Zang 1991). Rist & Fasel (1995) carried out a
spatial DNS of a transitional boundary layer and confirmed the main experimental
observations described by Williams et al. (1984). Rist & Fasel (1995) made a detailed
comparison of their experimental data with DNS results. The agreement between
physical and numerical experiments showed that DNS is a very powerful tool for
analysing fine structures in the transition zone. In particular, DNS proved that the
spikes are associated with ring-like (or Ω-like) vortices that separate from the tips of
the large Λ-vortices.

The above describes the conventional thinking that evolved following the seminal
paper by Klebanoff et al. (1962). For a comprehensive recapitulation we have to
discuss a scenario of oblique transition. Schmid & Henningson (1992) considered
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transition initiated by a pair of oblique modes (O-regime) in a channel flow by
using a temporal DNS. Joslin, Street & Chang (1992) and Berlin, Lundbladh &
Henningson (1994) investigated the oblique transition scenario with spatial DNS in
boundary layers. Due to nonlinear interaction, the pair of oblique waves gives rise
to streamwise vortices, which in turn lead to low- and high-speed streaks of large
amplitude due to the lift-up effect. The breakdown to turbulence results from the
secondary instability of the streaks (Reddy et al. 1998). Experiments concerned with
the oblique transition were carried out by Elofsson & Alfredsson (1998) in plane
Poiseuille flow and by Elofsson (1998) and Berlin, Wiegel & Henningson (1999) in
boundary layers. The experiments support the DNS results concerning the breakdown
to turbulence through the secondary instability of the streaks. The recent numerical
and experimental investigation by Berlin et al. (1999) discovered that Λ-patterns also
appear during the late stage of oblique transition. Thus, there is a similarity between
flow structures at the late stage of transition in K-, N- and O-regimes.

One can recognize that experiments by ETW and those presented in this paper
deal with an oblique type of transition because they start with two opposing helical
modes. However, one should keep in mind that the term ‘oblique transition’ is usually
used in conjunction with the supposition that the streamwise vortices evolve from a
linear mechanism consistent with the theories of non-modal growth.

Ellingsen & Palm (1975) considered the inviscid case of an initial disturbance that is
independent of the streamwise coordinate and found that the streamwise-disturbance
amplitude may grow in time, even though the basic flow does not posses an inflection
point. Landahl (1980) showed that all parallel inviscid shear flows are unstable to a
wide class of three-dimensional disturbances. The result is independent of whether
the shear flow is unstable or not to exponential growth of wave-like disturbances.
This type of instability, that is not related to an exponential growth, is referred to as
‘non-modal growth’.

Hultgren & Gustavsson (1981) considered the temporal evolution of a three-
dimensional disturbance in a boundary layer and found that the initial growth is
followed by a viscous decay (transient growth). The investigations by Gustavsson
(1991), Butler & Farrel (1992), Reddy & Henningson (1993), and Trefethen et al.
(1993) showed a great potential for bypass transition resulting from the non-modal
growth. The phenomenon of transient growth was studied in pipe flow numerically by
Boberg & Brosa (1988), O’Sullivan & Breuer (1994) and Ma et al. (1999). Theoretical
analysis of transient growth in pipe Poiseuille flow within the scope of temporal
theory was carried out by Bergström (1992, 1993), Schmid & Henningson (1994),
and Trefethen, Trefethen & Schmid (1999). Mayer & Reshotko (1997) performed an
analysis of transient growth in a circular pipe, and concluded that the phenomenon
had been observed experimentally by Kaskel (1961). We should point out that the
theoretical analysis of transient growth was carried out within the framework of a
temporal theory, while a spatial development is observed in experiments. Recently,
Reshotko & Tumin (1999) generalized the method of Schmid & Henningson (1994)
for spatial disturbances of a prescribed frequency. The calculations revealed that
stationary disturbances may achieve a more significant transient growth than non-
stationary ones. The maximum transient growth exists at azimuthal index m = 1
for stationary perturbations, whereas non-stationary perturbations may achieve their
maxima at higher azimuthal indices. The spatial analysis confirmed the potential of
the non-modal growth for bypass transition.

Morkovin (1993) distinguished ‘strong-disturbance bypasses – category S ’ and
‘weak-disturbance bypasses – category W ’. A bypass of category S may be observed
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in a high-disturbance environment, while a W -bypass may manifest itself in a lower-
disturbance environment. The oblique transition scenario comprising the non-modal
linear growth mechanism is an example of the W -bypass. Ma et al. (1999) performed
numerical simulations of a pipe flow subjected to periodic blowing and suction at
small and finite amplitudes. The results demonstrated the transient growth mechanism
and a possibility of the oblique transition scenario.

Although the experiments by ETW deal with the oblique type of transition, they
revealed that there is a self-sustaining mechanism responsible for high-amplitude
streaks. The observation is consistent with theoretical models by Waleffe (1997) and
Bergström (1999). It is conceivable that the amplitudes chosen in the experiment were
too high and the linear non-modal growth could not be observed behind the stronger
self-sustained amplification. We do not pursue a discussion of possible mechanisms
responsible for formation of high-amplitude streaks since the topic of our research
is the late stage of transition. (We refer to the paper by Baggett & Trefethen 1997
where they suggest that the different models might be much closer than it appears at
first glance.)

Reuter & Rempfer (1998) modelled numerically the experiments of ETW and found
that the transition process is accompanied by Λ-like (hairpin-like) vortices. This result
together with observations of spikes (Eliahou et al. 1998a) indicates that there is a
similarity between the late stages of the transition processes in a boundary layer (K-,
N- and O-types) and in a circular pipe flow.

The object of the present paper is to reinforce experimentally the notion of similarity
between the late stages of transition in both of these flows, and perhaps expand this
notion to other wall-bounded flows.

2. Apparatus and instrumentation
The experiments were carried out in a 33 mm diameter (D) and 17 m long aluminium

pipe (described in detail by ETW). The new feature of the system is an advanced
version of the disturbance generator. The disturbances were generated by eight
acoustic drivers (as it was done in ETW) but the perturbations were now conveyed
to 24 settling chambers located around the pipe (instead of eight chambers used by
ETW). Another difference is that the mixing among the jets originating from adjacent
chambers occurred inside a common chamber that lead to a slot. The idea was
proposed by Gaponenko & Kachanov (1994) for their boundary-layer experiments.
The common chamber serves to smooth interactions between neighbouring jets. A
further improvement was associated with the exit from the common chamber to the
pipe. To avoid a local separation near the exit, it was inclined at 45◦ to the flow
direction. Although the width of the exit slot was adjustable, the experiments were
carried out at constant 2.8 mm width in the direction of streaming. A photograph
illustrating a part of the disturbance generator is shown in figure 1. To observe
the evolution of the disturbance at various distances from the generator, a few
interchangeable pipe sections were affixed to the generator, which was located at
X/D = 400 from the pipe inlet.

Measurements were done using a constant-temperature hot-wire anemometer man-
ufactured by AA Lab Systems Ltd. The hot-wire element itself was made of tungsten,
5 µm in diameter and about 1 mm in length. Two types of hot-wire probes were
used in the experiments. The first one was a single standard DANTEC P14 probe.
The probe was used for measurements of streamwise velocity at any specific location
(r, θ, x). The second one was a hot-wire array of seven parallel wires for simultaneous
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Figure 1. Open disturbance generator with 24 settling chambers.

measurement of the streamwise velocity and its radial derivative. The radial length
of the array was equal to 3.3 mm. A special traversing mechanism was designed to
move the hot-wire array around under computer control. Initial alignment of the
probes was accomplished as described by ETW, i.e. by blocking the pipe exit with a
plug containing small holes 0.2 mm in diameter. The probes were calibrated against
the local dynamic pressure monitored by a Validyne DP-103 pressure transducer.
The variation of the anemometer voltage output with velocity was approximated
by a third-order polynomial. The calibration was carried out between 0.2 m s−1 and
3 m s−1. The data from the hot-wire probes, sampled at a frequency of 950 Hz each,
together with a reference signal, were digitized and stored on a PC. The disturbance
signal was used for phase reference.

Signals for the disturbance source were generated by a computer interface board
made by the National Instruments Corporation. The ten independent 12-bit voltage
output channels of this board were used as a source for the prescribed signal gen-
eration. The output signal was amplified by a ten-channel power amplifier, built at
Tel-Aviv University for activating the loudspeakers. The resulting pressure perturba-
tion of the same amplitude was distributed to three settling chambers chosen among
24 chambers available in order to get the best output for the required azimuthal
mode. In preparation for the present experiments, all results reported by ETW were
reproduced because they helped to validate the new instrumentation.

3. Results
The disturbance frequency used in the present experiments was identical to the

one used by ETW (i.e. f = 18.5 Hz), and the Reynolds number was slightly higher
(i.e. Re = 2350 instead of 2280). The amplitude of the disturbance corresponded to
the so called high-amplitude regime defined by ETW, which is characterized by the
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Figure 2. Azimuthal variation of the fundamental disturbance amplitude uf at r/a = 0.36.◦, X/D = 1.52; +, X/D = 2.42; ×, X/D = 2.88. m = ±3.

appearance of streamwise vortices and transition to turbulence. The main part of the
experiments was also carried out in a similar manner with combinations of counter-
rotating helical modes having indices m = ±1, m = ±2 and m = ±3. The simultaneous
excitation by counter-rotating, (±), modes ensured the generation of steady streamwise
vortices that are of great importance to the transition mechanism. Because the goal
of the investigation was to concentrate on the late stage of transition, we have dealt
with relatively high initial amplitudes. Keeping in mind the experimental observations
by ETW that a self-sustained amplification of disturbances was generated in the pipe,
we will avoid discussing the streamwise growth of the vortices as a consequence of a
linear mechanism consistent with the theories of non-normal growth. We also carried
out an experiment (similar to the one carried out by Borodulin & Kachanov (1995))
without the imposed periodicity in the azimuthal coordinate and we shall refer to it
as to a single-peak experiment (see § 3.2).

3.1. Experiments with counter-rotating helical modes

3.1.1. Time averaged velocity

Simultaneous excitation of ±m helical modes gives rise to steady streamwise vortices
of index 2m resulting from a nonlinear interaction. The counter-rotating streamwise
rolls ensure an azimuthal redistribution of the momentum due to the lifting of fluid
between adjacent pairs. The redistribution in the time-averaged velocity is accom-
panied by an azimuthal variation in the streamwise, periodic-in-time, disturbances
that possess both peaks and valleys. The azimuthal distribution of the streamwise
velocity component of the filtered disturbance amplitude (the first harmonic uf) for
m = ±3 excitation at r/a = 0.36 (a being the pipe radius) is shown in figure 2 (Um
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is the average velocity in the pipe). It contains six peaks whose wavelength λθ is
approximately aπ/3 (i.e. about the pipe radius). The evolution of this amplitude
(distributed over θ = ±30◦, i.e. 2π/6) in the direction of streaming is shown in figure
2(b). The amplitude initially decreases at the peak position and increases in the
valleys. Further downstream the amplitude increases at all azimuthal angles, θ. The
time-averaged velocity profiles at azimuthal angles corresponding to a peak and a
valley of the amplitude are plotted in figure 3 for three helical modes of excitation
m = ±1; m = ±2 and m = ±3. One may observe that the velocity profile at the peak
has an inflection point that is similar to the one observed in a boundary layer.

The time-averaged contours of velocity for azimuthal angles −30◦ < θ < 30◦
at four streamwise locations in the pipe, corresponding to m = ±3 excitation, are
plotted in figure 4 (y is a distance measured from the pipe wall). One can see low-
speed fluid propagating toward the centre of the pipe with increasing distance from
the disturbance generator. The contour plots for m = ±1 and m = ±2 are similar,
they differ in the azimuthal width of the pattern only.

3.1.2. Spike observations

The temporal velocity traces across the entire pipe corresponding to the azimuthal
location of a peak amplitude are shown in figure 5 for three x-locations when the flow
was excited by m = ±3 modes. The radial location of the largest spike, rs, at various
streamwise stations is presented in figure 6. When helical modes m = ±1 were excited
simultaneously, the streamwise distance, over which a single spike was observed,
was short and it did not extend beyond X/D = 1.5 downstream of the disturbance
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generator. The streamwise distance over which the spike could be observed for the
m = ±2 mode was longer and for the m = ±3 mode it was longer still. One can
see that the spike travels toward the centre of the pipe and away from the wall as
it does in boundary-layer experiments. In a boundary layer, the spike approaches
the outer edge. In pipe flow, it can arrive at the pipe axis where an interaction with
structures originating from different azimuthal locations takes place. In the central
region, therefore, the process loses its similarity to the boundary layer, where such
an interaction cannot occur. For m = ±1, where two peak regions were generated on
opposite sides of the pipe (θ = ±π), the interaction across the radius undulates the
single spikes rapidly and thus they are not seen at X/D > 1.5. The significance of
the azimuthal interaction increases with increasing mode index m and this inhibits the
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radial spreading of the single spikes, making them visible for larger and larger X/D
(figure 6). In the discussion that follows we shall confine our attention to the case
m = ±3 while keeping the qualitative similarity to the m = ±1 and ±2 excitations in
mind.
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The amplitude spectra of the velocity disturbances corresponding to the largest spike
location are shown in figure 7. The spectra were obtained from the corresponding
traces that were not ensemble averaged. One can see that the spike consists of many
harmonics having amplitudes Ai that decay in a geometric progression with increasing
frequency. The geometric-progression factor q = Ai+1/Ai (see figure 8) remains almost
constant (about 0.75) after the formation of the single-spike structure at approximately
X/D ≈ 1.7. Figure 9 demonstrates the synchronization of the harmonic constituent of
the spike for m = ±3 excitation. A comparison of the present results with experimental
data obtained in the boundary layer (Borodulin & Kachanov 1988, 1995) shows that
they are very similar indeed and thus the spike represents the same phenomenon in
both flows.

The group velocity of the spike for the m = ±3 case is presented in figure 10. The
group velocity of the single spike was calculated as cg = dXs/dt, where Xs is the spike
streamwise location evaluated from the phase-locked measurements. In Borodulin
& Kachanov (1995), the group velocity was approaching the velocity prevailing at
the edge of the boundary layer. In our experiments it approaches the time-averaged
velocity on the pipe axis. It is worth mentioning that the large bulges at the outer
edge of a turbulent boundary layer propagate at U/U∞ ≈ 0.93 (Kovasznay, Kibens &
Blackwelder 1970). The downstream evolution of phases corresponding to the leading
three harmonics of the spike are shown in figure 11. The coordinates, r/a, were chosen
to correspond with the peak of the disturbance. From these phase measurements we
evaluated the phase velocities that are equal to cf/Um = 1.36, c2f/Um = 1.14 and
c3f/Um = 1.26 for m = ±2 excitation, and they are somewhat lower for the m = ±3
excitation (i.e. cf/Um = 1.04, c2f/Um = 1.02 and c3f/Um = 1.08). In the experiments
of Williams et al. (1984), the phase velocity of the second harmonic was within 15%
of the wave speed of the fundamental disturbance inside the boundary layer. One
can see that our results for the wave speeds in the m = ±2 case are similar to the
results Williams et al. (1984). The phase velocities for the m = ±3 disturbance agree
to within a few percent.

3.1.3. The high-shear layer

Kovasznay et al. (1962) discovered a very intense vortical layer in the transitioning
boundary layer flow that had the shape of delta wing propagating downstream in
the (X,Z)-plane. They deduced this by measuring instantaneous velocity profiles
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(using an array of hot wires) at various phases of their vibrating ribbon. The shear
layer observed in the transitional pipe flow is now compared to the observations of
Kovasznay et al. (1962). Instantaneous velocity profiles measured at different phases
of the forcing cycle at a location corresponding to the dominance of a single spike
(peak, X/D = 1.52) are plotted in figure 12. One may observe the appearance of the
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high-shear layer at t/T = 0.1, at y/a = 0.6 and its migration toward the wall with
increasing time. The instantaneous velocity gradient is about 2 times larger than the
maximum gradient observed in the undisturbed pipe flow. This observation agrees
with similar ones made in boundary layers.

Dimensionless contours of ∂(U + u′)/∂y, which represents the main component of
the azimuthal vorticity (at the azimuthal location corresponding to the peak), are
shown in figure 13 for increasing X/D. At X/D = 1.52 the shear layer has a typical
shape that was observed in the boundary layer during the one-spike stage. The leading
edge is bent down (toward the wall) and a ‘kink’ appears in the vortex pattern. This
‘kink’ is associated with a spike. At X/D = 1.97 a second ‘kink’ developed and
a second spike was observed in the temporal velocity traces. Further downstream
(X/D > 4) the breakdown of the shear layer becomes apparent.

The plan view of the shear layer measured at X/D = 1.52 (each point corresponds
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Figure 14. High-shear layer a/Um∂(U + u′)/∂y for the m = ±3 case. X/D = 1.52.
Ensemble averaging of 70 events.

to y/a of its local maximum value) is shown in figure 14. Contrary to the delta-
wing shape observed in a plane boundary layer (Kovasznay et al. 1962) the present
azimuthal vorticity contours resemble a ‘tadpole’, the difference being attributed to
the difference in the flow geometry. In the experiments of Kovasznay et al. (1962) the
base of the shear-layer pattern (measured near the surface) was about five boundary-
layer thicknesses wide. The characteristic scale in the pipe flow, corresponding to
the boundary-layer thickness, is the pipe radius, and there is insufficient azimuthal
distance to attain a similarity with the pattern generated in the boundary layer.

Two shear layers, one measured at the peak and the other in the valley, together
with the corresponding instantaneous velocity profiles are plotted in figure 15 and
they may be compared with figure 16 of Williams et al. (1984). The time in this figure
(seen by a stationary observer located at X/D = 1.52) increases from right to left.
The foot of the velocity profile gives its corresponding time value. The patterns are
similar to the observations made by Williams et al. (1984).

The understanding of the mechanism responsible for the formation of the high-
shear layer during the transition process is a task addressed by experimentalists
and computors alike. It was recognized (see § 1) that a Λ-vortex is generated in
the flow. The streamwise vorticity in the vortex legs creates a strong upward fluid
motion in the interior of the Λ thus forming a high-shear layer. The existence of
a vortex loop near the head of the Λ-vortex was demonstrated both numerically
and experimentally (Rist & Fasel 1995; Rist & Kachanov 1994) The vortex loop
is associated with the appearance of a spike in the temporal velocity traces. To
reconstruct the complete vorticity field, one has to carry out measurements of all
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three velocity components. Borodulin et al. (1998) suggested illustrating the pattern
at a given cross-section by considering the total, instantaneous velocity gradient
[(∂(U+u′)/∂y)2 + (∂(U+u′)/∂z)2]1/2 in the (y, z)-plane. The shape was reminiscent of
an Ω. When the same idea was applied to pipe-flow experiments, the instantaneous
velocity gradient was calculated as [(∂(U+u′)/∂r)2 + r−2(∂(U+u′)/∂θ)2]1/2 (figure 16).
One can see that the pattern is not as well shaped as the Ω observed in a boundary
layer because of possible interactions from opposite sides of the pipe.

We can speculate that there is a vorticity loop having legs that are almost aligned
with the direction of streaming that resembles a hairpin vortex with its legs aligned
with the pipe axis.

3.2. A single-peak experiment

An isolated spanwise non-uniformity was generated in the amplitude of the funda-
mental instability wave by Borodulin & Kachanov (1995). This was done by glueing
two strips of adhesive tape under the oscillating ribbon that provided the primary
disturbance. Thus, a solitary peak was observed along the span, in the amplitude
distribution of the streamwise component of velocity. Generating an isolated peak in
the pipe flow is also helpful because it provides more space for development of the
vortices prior to their inevitable interaction with other participants in the process.
We provided a local non-uniformity in the flow by adding a weak steady jet that



18 G. Han, A. Tumin and I. Wygnanski

spike

–30

0.7
(a)

7.76–8.50
7.02–7.76
6.28–7.02
5.54–6.28
4.80–5.54
4.06–4.80
3.32–4.06
2.58–3.32
1.84–2.58
1.10–1.84

0.5

0.6

0.4

0.3

y
a

õ (deg.)

0.2

–20 –10 0 10 20 30 –30

0.7

0.5

0.6

0.4

0.3

0.2

–20 –10 0 10 20 30

(b)

–30

0.7
(c)

0.5

0.6

0.4

0.3

y
a

0.2

–20 –10 0 10 20 30 –30

0.7

0.5

0.6

0.4

0.3

0.2

–20 –10 0 10 20 30

(d )

õ (deg.)

Figure 16. The instantaneous velocity gradient in the (y, θ)-plane at X/D = 1.52. (a) t/T = 0.18;
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exhausted through a slot. The two-dimensional fundamental disturbance used in the
boundary layer was replaced by an axisymmetric disturbance (m = 0) in the pipe.
Whereas the experiments using helical modes of indices ±m are similar to the experi-
ments concerned with oblique type of transition in boundary layers, the single-peak
experiment resembles the introduction of a large-amplitude TS-wave in a flat-plate
boundary layer. As it was discovered by Berlin et al. (1999), the late stages of oblique
transition are all alike in boundary layers, and one may expect that the same will
hold in the pipe.

3.2.1. Time-averaged velocity

The time-averaged velocity contours in the (y, θ)-plane are shown in figure 17. The
low-speed streak in the time-averaged velocity profile corresponds to the peak in
azimuthal distribution of the disturbance amplitude. The azimuthal variation of the
amplitude of the fundamental harmonic at r/a = 0.39 corresponding to the maximum
amplitude at θ = 0 is shown in figure 18. It is obvious that the azimuthal widths of the
streaks and their disturbance amplitude variation have approximately the same values
as in the experiments that used simultaneous excitation of m = ±3 modes (figure 2b).
As a consequence, we expect that the results for the single-peak experiment would be
similar to the results discussed in § 3.1.
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3.2.2. Spike observations

The time histories of the streamwise velocity component are similar to those
observed in § 3.1.2 (figure 5) where one could recognize the formation and the de-
velopment of spikes. Once again the radial location of the spike approaches the
pipe axis with increasing distance from the disturbance generator (figure 19). The
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spectra of the disturbance, at a location corresponding to the spike maximum also
reveal the presence of many higher harmonics with amplitudes that diminish in a
geometric progression (figure 20). The geometric progression factor remains almost
constant (about 0.75) as it was in the experiments with counter-rotating helical
modes. One may observe (figure 20) the appearance of a subharmonic f1/2 = f/2
and various sums of frequencies like 3f/2, 5f/2, . . . (e.g. see spectrum 2) in figure 20.
This may be attributed to subharmonic resonance interactions between the strong
axisymmetric (forced) wave and the undisturbed helical modes existing in the back-
ground.
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Figure 21. Development of the high-shear layer a/Um∂(U + u′)/∂y in the single-peak experiment.
(a) X/D = 1.21; (b) 1.52; (c) 1.82; (d) 2.42; (e) 3.03; (f) 3.94. Ensemble averaging of 70 events.

3.2.3. The high-shear layer

The results obtained in a single-peak experiment carried out in transitional pipe
flow are now discussed. The development and breakdown of the high-shear layer that
is characterized by (a/Um)∂(U + u′)/∂y with increasing distance from the disturbance
generator is shown in figure 21.

One can see that many of the features discussed in § 3.1.3 (such as the formation
of a ‘kink’ that is associated with the appearance of a spike in the temporal traces of
velocity, the inclination of the shear layer to the surface and its eventual disintegration)
are reproduced in this experiment. Specific details in the development of the high-
shear layer may differ due to differences in initial amplitudes, time-averaged velocity
field etc., but the same physical mechanisms appear to control the route to transition.
One may note, for example, the regular wavy appearance of the vorticity contours
seen in figure 21(c–e) that were not seen in figure 13. This might be the result of
random helical buffet rather than the orderly azimuthal periodicity. The width of
the high-shear layer in plan view is almost constant (figure 22). The instantaneous
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velocity gradient in the (y, θ)-plane is shown in figure 23. There is a well-shaped
Ω-pattern. Once again, this shape agrees with observations made in a boundary layer
(Borodulin et al. 1998). Although the shape of the high-shear layer in the plan view
is different from the delta-wing shape observed in boundary layer flows, the structure
at t/T = 0.0− 0.2 is the same. The results also indicate that there is a vorticity loop
whose legs are approximately aligned with the direction of streaming, and it looks
like a typical hairpin vortex.

4. Discussion and summary of the results
The experiments of ETW indicated that transition to turbulence in a fully developed

pipe flow can occur only after the parabolic profile was distorted by longitudinal
vortices. Such a distortion may be generated by a steady or by a periodic disturbance.
The vortices may be amplified due to the linear mechanism of non-modal growth, or
due to a self-sustaining mechanism. In the present experiment the specific features of
the late stages of laminar–turbulent transition in a pipe were explored. It follows that
an ‘elementary constituent’ of the process is a hairpin vortex with its ‘head’ deflected
toward the pipe axis. The hairpin vortex generates a low-speed streak between its
legs as it does in a boundary layer. This results in a formation high-shear layer.
When counter-rotating helical modes are excited, a system of peaks and valleys in
the disturbance amplitude is formed similar to the ones observed in a boundary layer
with each peak corresponding to a low-speed streak near the surface and a creation
of the high-shear layer across the flow (be it in a boundary layer or in a pipe). As the
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Figure 23. The instantaneous velocity gradient in the (y, θ) plane at X/D = 1.21. (a) −t/T = 0.10;
(b) −0.12; (c) −0.40; (d) −0.60. Ensemble averaging of 70 events.

shear layer travels downstream, a ‘kink’ appears in its elevation view (in the (r, x)-
plane) just above the low-speed bump. It is manifested by a spike in the temporal
records of the streamwise velocity. The main features of the spike in a pipe are again
very similar to those in a boundary layer. With the passage of time the spike not
only propagates downstream but it also propagates across the flow. In the boundary
layer, spikes propagate toward the boundary layer edge, while in the pipe flow, spikes
approach the pipe axis. In this case they may interact with spikes coming from the
other areas of the pipe. Owing to this focusing, the highly deterministic picture that
was observed in a boundary layer is destroyed. This may be a source for a more rapid
randomization process in the pipe. Therefore, in spite of many similarities between
transition in boundary layers and pipe flow that have been established in the present
work, the geometry specifics might reveal some other paths to transition. The same
phenomenon may also be observed in a plane Poiseuille flow where the peak–valley
structures are generated simultaneously near both opposing walls.

Recently, Reuter & Rempfer (2000) accomplished a DNS simulation representing
the current experiments with helical m = ±3 excitation. Their results support the
experimental observations regarding spikes, high-shear layer and hairpin vortices.

The observation of a bypass transition due to the generation of hairpin vortices
is not new in transition experiments. Klebanoff et al. (1962) had already observed
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a bypass of the linear stage whenever the initial amplitude of the perturbation
was large. Subcritical transition triggered by the generation of hairpin eddies was
investigated experimentally in a plane Poiseuille flow and in a boundary-layer flow
by Nishioka & Asai (1985), Asai & Nishioka (1995, 1997) and Asai, Sawada, &
Nishioka (1996). It was pointed out that the process is similar to the late stage
of ribbon-induced transition (Nishioka, Asai & Iida 1981). The bypass transition
required a threshold amplitude for the eddies. For the purpose of further clarification
of this fact in the pipe flow, an additional single-peak experiment was carried out at
lower input amplitude. A high-shear layer was formed that signified the existence of
a hairpin vortex, but transition did not occur and the disturbances decayed farther
downstream (the observation corresponds to the intermediate regime reported by
ETW). Thus, the result demonstrates the need for a threshold amplitude in the pipe
flow as well.

Hairpin vortices in a boundary layer were investigated experimentally by Acarlar
& Smith (1987a, b) and Haidari & Smith (1994). The hairpin vortices were generated
by a hemispheric protuberance and the injection of fluid into the boundary layer.
The results indicated the need for a threshold level of the disturbance amplitude and
Reynolds number to trigger the regeneration of hairpin vortices. One may speculate
that a hairpin vortex is a common element in both regular and in bypass routes
to transition. There may be, therefore, a more general criterion for the transition to
turbulence than is known today. Such a criterion must be related to dynamics of
hairpin vortices in a shear flow (it is pertinent to mention here the recent results by
Levinski & Cohen 1995).

The present experiment is concerned with a transition triggered by wave trains
induced through the pipe wall. It would also be interesting to link the current
observations of the hairpin vortices to the dynamics of the ‘natural conditions’.
Wygnanski & Champagne (1973) observed that for smooth inlets, transition occurs
as a result of instabilities in the boundary layer long before the flow becomes fully
developed in the pipe. This type of transition gives rise to turbulent slugs that
occupy the entire cross-section of the pipe. When a large disturbance was introduced
into the inlet, a mixed laminar and turbulent flow was observed far downstream
for 2000 < Re < 2700. This type of turbulent-like flow was called a ‘puff’. Our
experiments were carried out in the same Reynolds number range, and one can
expect that the dynamics of puffs may be somehow interpreted in terms of the
dynamics of hairpin vortices. Shan et al. (1999) investigated numerically a puff and a
slug that were triggered by a disturbance in the form of local blowing and suction of
fluid through a slot in the pipe wall. They found streamwise vortices in the trailing-
edge region. The results indicate that there might be a link to the present experiments
using the wave trains inasmuch as the transition is also accompanied by streamwise
vortices.
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